Three Dimensional Printing # Emanuel Sachs Professor of Mechanical Engineering sachs@mit.edu | REPORT DOCUMENTATION PAGE | | | | Form Approved OMB No.
0704-0188 | |---|---|---|---|---| | Public reporting burder for this collection of information is
and reviewing this collection of information. Send commer
Headquarters Services, Directorate for Information Operati
law, no person shall be subject to any penalty for failing to | ts regarding this burden estimate or any other a
ons and Reports (0704-0188), 1215 Jefferson I | aspect of this collection of inform
Davis Highway, Suite 1204, Arlin | nation, including suggestions for reducin
agton, VA 22202-4302. Respondents sho | g this burder to Department of Defense, Washington
ould be aware that notwithstanding any other provision of | | 1. REPORT DATE (DD-MM-YYY)
30-05-2001 | | PE . | 3. DATES | COVERED (FROM - TO)
to 01-06-2001 | | 4. TITLE AND SUBTITLE | • | | 5a. CONTRACT | NUMBER | | Three Dimensional Printing | | | 5b. GRANT NUI | MBER | | Unclassified | | | 5c. PROGRAM I | ELEMENT NUMBER | | 6. AUTHOR(S) | | | 5d. PROJECT N | UMBER | | Sachs, Emanuel; | | | 5e. TASK NUMI | | | | | | 5f. WORK UNIT | | | 7. PERFORMING ORGANIZATIO
MIT
xxxxx, MAxxxxx | ON NAME AND ADDRESS | S | | G ORGANIZATION REPORT | | 9. SPONSORING/MONITORING | AGENCY NAME AND AD | DDRESS | 10. SPONSOR/M | IONITOR'S ACRONYM(S) | | Office of Naval Research Internation Office of Naval Research Washington, DCxxxxx | nal Field Office | | MONITOR'S REPORT | | | APUBLIC RELEASE , 13. SUPPLEMENTARY NOTES See Also ADM001348, Thermal M downloaded from: http://www-mec | | d in Cambridge, UI | K on May 30-June 1, 200 | 01. Additional papers can be | | 14. ABSTRACT 3D Printing is an SFF Process which ink-jet printing of a binder material | h creates parts in layers. Eac | ch layer is formed b | y spreading powder and | selectively joining the powder by | | 15. SUBJECT TERMS | | | | | | 16. SECURITY CLASSIFICATION | ON OF: 17. LIMITOF ABST | TRACT NUME | | RESPONSIBLE PERSON | | a. REPORT b. ABSTRACT Unclassified Unclassified | c. THIS PAGE
Unclassified | | 19b. TELEPHO
International Area C
Area Code Telepho
703767-9007
DSN
427-9007 | code
ne Number | | | | | | Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18 | # 3DP™ Team | FACULTY | RESEARCH STAFF | GRADUATE STUDENTS | | |----------------------|------------------------|---|--| | Emanuel Sachs | James Serdy | David Ables
René Apitz | | | Michael Cima | Chris Stratton | Diana Buttz
David Guo | | | Samuel Allen | Benjamin Polito | Richard Holman | | | Nick Patrikalakis | | Sang-bum Hong
Hongye Liu | | | Linda Griffith | Post-Docs and Visitors | Adam Lorenz
Mark Oliveira
Chilukuri Ram | | | | Hiroyasu Tsuchiya | Stephen Smyth Scott Uhland | | | | Yasushi Enokido | Markus Werner
Calvin Yuen | | # The 3D Printing Process - Any material as a powder - Scaleable with multiple nozzles - Local Composition Control # MIT's 8-jet Printhead Allows for wide range of materials, precise droplet location and scalability. Printing a layer # Removing the Green Part from the Powder Bed #### Office Modeler; Z Corp., Burlington, MA - Low cost machine. - Office environment (water binder, starch powder or plaster based) - High reliability. - FAST ## Ceramic Molds for Metal Castings; Soligen, Inc. Northridge, CA - 3D Print Ceramic mold - Colloidal silica binder into alumina powder - Fastest route to a casting. - Soligen Operates "Parts Now" which accepts files and returns castings. # Filters; Specific Surfaces, Franklin, MA - Focus: ceramic filters for power plants high filter area, durable, cleanable. - Successful tests in "bag houses" (2000 hours). Tests on full scale pilot plant next. EPRI funded. #### Medical Applications; Therics, Inc. Princeton, NJ - Drug delivery devices. - Scaffolds for tissue engineering. - Direct printing of tissue and organs. - Direct printing of metallic prostheses. #### Direct Printing of Metal Tooling; ExtrudeHone Corp., Irwin, PA - Directly print metal tooling. - Polymer binder into metal powder. # **Tooling by Direct Printing** # Finished Tool and Molded Part ## Conformal Cooling in an Industrial Application Tool made by 3D Printing with serpentine cooling channel #### **Improvement over Production Tool** | Cycle time | | Part Distortion | | |------------|--|-----------------|--| | 0/ 31 1 1 | | 0.07 | | **Condition #1** **Condition #2** | 15% (limited by sprue) | 9% | | |------------------------|-----|--| | 0%(limited by sprue) | 37% | | #### Conformal Cooling; Data from Design of Expt's #### Typically - 20% reduction in cycle time - 15% reduction in shrinkage Schmidt et al, "Conformal Cooling vs Conventional Cooling: An Injection Molding Case Study with p-20 and 3DP tooling, MRS 4/00 #### Partnership in Technology # EXTRUDEHONE - Blow Mold Cavities - MoldFusion™ First Design - Two conformal and opposing flow circuits - MoldFusion™ Second Design - · Two conformal linear flow circuits - Turbulence chevron features # Demonstration of Performance: Conformal Cooling #### **Conformal Cooling Condition** $$\frac{L^2}{k} < \frac{Cycle\ Time}{\rho\ c}$$ # Conformal Cooling Channel Design Methodology #### Surface Textures for Heat Transfer Augmentation #### Heat Transfer Coefficient #### Pressure Drop (ΔP) # Rapid Thermal Cycle Tooling #### 3D Printed Tool for Rapid Thermal Cycling The tool has cooling/heating channels in the top plate and stands on 2000 posts (which allow for thermal expansion/contraction) #### Homogeneous Metal Parts by Infiltration Porous skeleton of nickel or other high temperature material Infiltration using same material containing a melting point depressant (MPD) Diffusion of MPD into skeleton creates a solid homogeneous part ~1 kg infiltrated part (Ni-4Si) # **Infiltration Distance** - Capillary limit $h = \frac{1}{2\gamma} \cdot \frac{2\gamma}{-1}$ >0.5 m typical for 100 μ m powder - Premature freezing of infiltrant can choke liquid flow Skeleton made of $\sim 50-150 \mu m$ powder (both cases) Ni infiltrated with Ni-10Si Steel infiltrated with Cu # Solidification Time Sequence - Wire bundle infiltrated and quenched at various times - Ni wire w/ Ni–10Si infiltrant - Infiltrated at 1200°C # Solidification Time Sequence - Wire bundle infiltrated and quenched at various times - Ni wire w/ Ni–10Si infiltrant - Infiltrated at 1200°C # **Mechanical Properties** Infiltrated - Infiltrated skeleton held 12 hrs at 1200°C for homogenization - Cast ingot of same composition - Hopefully Cr or other elements will provide more strengthening Cast ingot # Other Material Systems #### • Al–Si - Low solubility (no freeze-off) - Similar to cast microstructure - Pure Al infiltrated w/ Al–12Si at 625°C achieved 93.5% density #### • Ni-Cr-Si - solid solution strengthening - keep constant Ni:Cr ratio during diffusional solidification - Steel? # 3D Printing: Dry vs. Wet Layer Spreading #### Dry - Spherical as small as 10μ - Acycular as small as 20 μ #### Wet Anything that can be slurry processed ## Parts with Fine Metal Powder Architecture 1: Stationary Bed, Raster Print Z Corp. #### **Small Parts; Distinguishing Features** - Powder beds are small, light (<1 kg) and often cohesive. - **⇒** Move powder bed - Perimeter is short - ⇒ Vector Print the perimeter. X axis Vector printing ## Architecture 2: Moving Bed, Vector Print 2a. Layer Inspection (Done in transit) 3. Layer **Drying** 2. Layer Forming 0 4. Binder **Printing** 1. Substrate Load & Unload 5. Binder Drying - All stations in use all the time. - Automation ready. - Improved surface finish. ### Barrium Titanate Parts made by 3DP with Slurry # Local Composition Control; Like Color ink-jet Printing, but with Materials Titanium Carbide slurry printed in Moly powder; 83% dense ## **Information Flow** # Summary: 3DP for Thermal Management - Cooling/heating channels high complexity - Surface textures - Macro cellular structures - Locally controlled porosity - Locally controlled thermal conductivity